Hot Topics #1 (May 30, 2022)
Antibody design, protein folding, transfer learning, and text-to-image models.
Efficient evolution of human antibodies from general protein language models and sequence information alone. Hie et al.; April 11, 2022
Abstract: Natural evolution must explore a vast landscape of possible sequences for desirable yet rare mutations, suggesting that learning from natural evolutionary strategies could accelerate artificial evolution. Here, we report that deep learning algorithms known as protein language models can evolve human antibodies with high efficiency, despite providing the models with no information about the target antigen, binding specificity, or protein structure, and also requiring no additional task-specific finetuning or supervision. We performed language-model-guided affinity maturation of seven diverse antibodies, screening 20 or fewer variants of each antibody across only two rounds of evolution. Our evolutionary campaigns improved the binding affinities of four clinically relevant antibodies up to 7-fold and three unmatured antibodies up to 160-fold across diverse viral antigens, with many designs also demonstrating improved thermostability and viral neutralization activity. Notably, our algorithm requires only a single wildtype sequence and computes recommended amino acid changes in less than a second. Moreover, the same models that improve antibody binding also guide efficient evolution across diverse protein families and selection pressures, indicating that these results generalize to many natural settings. Contrary to prevailing notions of evolution as difficult and resource-intensive, our results suggest that when constrained to a narrow manifold of evolutionary plausibility, evolution can become much easier, which we refer to as the “efficient manifold hypothesis.”
Deep geometric representations for modeling effects of mutations on protein-protein binding affinity. Liu et al.; August 4, 2021
Abstract: Modeling the impact of amino acid mutations on protein-protein interaction plays a crucial role in protein engineering and drug design. In this study, we develop GeoPPI, a novel structure-based deep-learning framework to predict the change of binding affinity upon mutations. Based on the three-dimensional structure of a protein, GeoPPI first learns a geometric representation that encodes topology features of the protein structure via a self-supervised learning scheme. These representations are then used as features for training gradient-boosting trees to predict the changes of protein-protein binding affinity upon mutations. We find that GeoPPI is able to learn meaningful features that characterize interactions between atoms in protein structures. In addition, through extensive experiments, we show that GeoPPI achieves new state-of-the-art performance in predicting the binding affinity changes upon both single- and multi-point mutations on six benchmark datasets. Moreover, we show that GeoPPI can accurately estimate the difference of binding affinities between a few recently identified SARS-CoV-2 antibodies and the receptor-binding domain (RBD) of the S protein. These results demonstrate the potential of GeoPPI as a powerful and useful computational tool in protein design and engineering. Our code and datasets are available at: https://github.com/Liuxg16/GeoPPI.
Single Episode Policy Transfer in Reinforcement Learning. Yang et al.; February 12, 2020
Abstract: Transfer and adaptation to new unknown environmental dynamics is a key challenge for reinforcement learning (RL). An even greater challenge is performing near-optimally in a single attempt at test time, possibly without access to dense rewards, which is not addressed by current methods that require multiple experience rollouts for adaptation. To achieve single episode transfer in a family of environments with related dynamics, we propose a general algorithm that optimizes a probe and an inference model to rapidly estimate underlying latent variables of test dynamics, which are then immediately used as input to a universal control policy. This modular approach enables integration of state-of-the-art algorithms for variational inference or RL. Moreover, our approach does not require access to rewards at test time, allowing it to perform in settings where existing adaptive approaches cannot. In diverse experimental domains with a single episode test constraint, our method significantly outperforms existing adaptive approaches and shows favorable performance against baselines for robust transfer.
The coming age of "de novo" protein design. Huang et al; September 14, 2016
Abstract: There are 20^200 possible amino-acid sequences for a 200-residue protein, of which the natural evolutionary process has sampled only an infinitesimal subset. De novo protein design explores the full sequence space, guided by the physical principles that underlie protein folding. Computational methodology has advanced to the point that a wide range of structures can be designed from scratch with atomic-level accuracy. Almost all protein engineering so far has involved the modification of naturally occurring proteins; it should now be possible to design new functional proteins from the ground up to tackle current challenges in biomedicine and nanotechnology.
A topology-based network tree for the prediction of protein–protein binding affinity changes following mutation. Wang et al.; February 14, 2020
Abstract: The ability to predict protein–protein interactions is crucial to our understanding of a wide range of biological activities and functions in the human body, and for guiding drug discovery. Despite considerable efforts to develop suitable computational methods, predicting protein–protein interaction binding affinity changes following mutation (ΔΔG) remains a severe challenge. Algebraic topology, a champion in recent worldwide competitions for protein–ligand binding affinity predictions, is a promising approach to simplifying the complexity of biological structures. Here we introduce element- and site-specific persistent homology (a new branch of algebraic topology) to simplify the structural complexity of protein–protein complexes and embed crucial biological information into topological invariants. We also propose a new deep learning algorithm called NetTree to take advantage of convolutional neural networks and gradient-boosting trees. A topology-based network tree is constructed by integrating the topological representation and NetTree for predicting protein–protein interaction ΔΔG. Tests on major benchmark datasets indicate that the proposed topology-based network tree is an important improvement over the current state of the art in predicting ΔΔG.
MutaBind2: Predicting the Impacts of Single and Multiple Mutations on Protein-Protein Interactions. Zhang et al.; March 27, 2020
Abstract: Missense mutations may affect proteostasis by destabilizing or over-stabilizing protein complexes and changing the pathway flux. Predicting the effects of stabilizing mutations on protein-protein interactions is notoriously difficult because existing experimental sets are skewed toward mutations reducing protein-protein binding affinity and many computational methods fail to correctly evaluate their effects. To address this issue, we developed a method MutaBind2, which estimates the impacts of single as well as multiple mutations on protein-protein interactions. MutaBind2 employs only seven features, and the most important of them describe interactions of proteins with the solvent, evolutionary conservation of the site, and thermodynamic stability of the complex and each monomer. This approach shows a distinct improvement especially in evaluating the effects of mutations increasing binding affinity. MutaBind2 can be used for finding disease driver mutations, designing stable protein complexes, and discovering new protein-protein interaction inhibitors.
OSPREY 3.0: Open-source protein redesign for you, with powerful new features. Hallen et al.; October 14, 2018
Abstract: We present osprey 3.0, a new and greatly improved release of the osprey protein design software. Osprey 3.0 features a convenient new Python interface, which greatly improves its ease of use. It is over two orders of magnitude faster than previous versions of osprey when running the same algorithms on the same hardware. Moreover, osprey 3.0 includes several new algorithms, which introduce substantial speedups as well as improved biophysical modeling. It also includes GPU support, which provides an additional speedup of over an order of magnitude. Like previous versions of osprey, osprey 3.0 offers a unique package of advantages over other design software, including provable design algorithms that account for continuous flexibility during design and model conformational entropy. Finally, we show here empirically that osprey 3.0 accurately predicts the effect of mutations on protein–protein binding. Osprey 3.0 is available at http://www.cs.duke.edu/donaldlab/osprey.php as free and open-source software.
Computational approaches to therapeutic antibody design: established methods and emerging trends. Norman et al.; October 18, 2019
Abstract: Antibodies are proteins that recognize the molecular surfaces of potentially noxious molecules to mount an adaptive immune response or, in the case of autoimmune diseases, molecules that are part of healthy cells and tissues. Due to their binding versatility, antibodies are currently the largest class of biotherapeutics, with five monoclonal antibodies ranked in the top 10 blockbuster drugs. Computational advances in protein modelling and design can have a tangible impact on antibody-based therapeutic development. Antibody-specific computational protocols currently benefit from an increasing volume of data provided by next generation sequencing and application to related drug modalities based on traditional antibodies, such as nanobodies. Here we present a structured overview of available databases, methods and emerging trends in computational antibody analysis and contextualize them towards the engineering of candidate antibody therapeutics.
ColabFold: Making Protein Folding Accessible to All. Mirdita et al.; February 28, 2022
Abstract: ColabFold offers accelerated protein structure and complex predictions by combining the fast homology search of MMseqs2 with AlphaFold2 or RoseTTAFold. ColabFold’s 40 - 60× faster search and optimized model use allows predicting close to a thousand structures per day on a server with one GPU. Coupled with Google Colaboratory, ColabFold becomes a free and accessible platform for protein folding. ColabFold is open-source software available at github.com/sokrypton/ColabFold. Its novel environmental databases are available at colabfold.mmseqs.com
Imagen: Text-to-Image Diffusion Models. Google Research; May 23, 2022
Abstract: We present Imagen, a text-to-image diffusion model with an unprecedented degree of photorealism and a deep level of language understanding. Imagen builds on the power of large transformer language models in understanding text and hinges on the strength of diffusion models in high-fidelity image generation. Our key discovery is that generic large language models (e.g. T5), pretrained on text-only corpora, are surprisingly effective at encoding text for image synthesis: increasing the size of the language model in Imagen boosts both sample fidelity and image-text alignment much more than increasing the size of the image diffusion model. Imagen achieves a new state-of-the-art FID score of 7.27 on the COCO dataset, without ever training on COCO, and human raters find Imagen samples to be on par with the COCO data itself in image-text alignment. To assess text-to-image models in greater depth, we introduce DrawBench, a comprehensive and challenging benchmark for text-to-image models. With DrawBench, we compare Imagen with recent methods including VQ-GAN+CLIP, Latent Diffusion Models, and DALL-E 2, and find that human raters prefer Imagen over other models in side-by-side comparisons, both in terms of sample quality and image-text alignment.
DALL-E 2. OpenAI; April 13, 2022
Abstract: Contrastive models like CLIP have been shown to learn robust representations of images that capture both semantics and style. To leverage these representations for image generation, we propose a two-stage model: a prior that generates a CLIP image embedding given a text caption, and a decoder that generates an image conditioned on the image embedding. We show that explicitly generating image representations improves image diversity with minimal loss in photorealism and caption similarity. Our decoders conditioned on image representations can also produce variations of an image that preserve both its semantics and style, while varying the non-essential details absent from the image representation. Moreover, the joint embedding space of CLIP enables language-guided image manipulations in a zero-shot fashion. We use diffusion models for the decoder and experiment with both autoregressive and diffusion models for the prior, finding that the latter are computationally more efficient and produce higher-quality samples.
Protein folding + structure prediction in a HuggingFace Space: “GradioFold is a web-based tool that combines a large language model trained on natural protein sequence (protGPT2) with structure prediction using AlphaFold. Type a start sequence that protGPT2 can complete or let protGPT2 generate a complete sequence without a start token.”
Code for DeepMind's AlphaFold: “This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP14 and published in Nature. For simplicity, we refer to this model as AlphaFold throughout the rest of this document. We also provide an implementation of AlphaFold-Multimer. This represents a work in progress and AlphaFold-Multimer isn't expected to be as stable as our monomer AlphaFold system. Read the guide for how to upgrade and update code.”
scedar
: Code for “Single-cell exploratory data analysis for RNA-seq”: “Scedar
(Single-cell exploratory data analysis for RNA-Seq) is a reliable and easy-to-use Python package for efficient visualization, imputation of gene dropouts, detection of rare transcriptomic profiles, and clustering of large-scale single cell RNA-seq (scRNA-seq) datasets.”
Run ColabFold’s protein folding in Google Colab: “Making Protein folding accessible to all via Google Colab!”